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Abstract

In this paper, an integer-valued Lyapunov function σ : Λ → {0, 1, 2, · · · , n − 1} is first
defined on a dense open subset Λ of Rn. Subsequently, the integer-valued Lyapunov function
is extended to Rn by defining σM (x0) = maxx∈U(x0,δ)∩Λ σ(x) for all x0 ∈ Rn. Then the
property of the integer-valued Lyapunov function for a class of totally nonnegative matrices is
investigated. And by using the method of classification, it is shown that σM (Ax) ≤ σ(x) for
all x ∈ Λ.

Key Words: Totally nonnegative matrix; Integer-valued Lyapunov function; Oscillatory
matrix; Classification method

1 Introduction

In 1984, John Smillie[1] considered the following autonomous tridiagonal cooperative or com-
petitive system: 

x′1 = f1(x1, x2),

x′j = fj(xj−1, xj , xj+1), 2 ≤ j ≤ n− 1,

x′n = fn(xn−1, xn),

(1)

where f = (f1, f2, · · · , fn) is defined on Ω, a nonempty open subset of Rn. The fi and their partial
derivatives with respect to the xj are assumed to be continuous, and further assume that there exist
δi ∈ {−1, 1}, 1 ≤ i ≤ n−1, such that δi ∂fi

∂xi+1
> 0, δi

∂fi+1

∂xi
> 0, 1 ≤ i ≤ n−1. For the system (1),

John Smillie shows that every bound orbit of system (1) converges to an equilibrium. The system
is a vital class of mathematical models in biology, and it can be used to model the ecosystems of n
species x1, x2, · · · , xn with a certain hierarchical structures.

In recent years, the dynamical behavior of the tridiagonal cooperative or competitive systems
has received much attention, such as [2],[3],[4] and the references therein, and the results show that
the long-term behaviour of the systems is relatively simple. For example, Smith [2] studied the non-
linear periodic tridiagonal system and showed that every bounded solution converges to the periodic
solution. By using the appropriate coordinate transformation, the autonomous tridiagonal competi-
tive system can be transformed into the autonomous tridiagonal cooperative system. Thus, without
loss of generality, we only consider the cooperative case, i.e., δi = 1, 1 ≤ i ≤ n− 1. Generally, the
discrete dynamical systems can have more complicated dynamics than the continuous systems. For
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instance, the discrete-time demographic model may exhibit chaotic dynamics [5]. Therefore, it is
necessary to investigate the dynamical behaviour of the following discrete tridiagonal cooperative
system: 

x
(k)
1 = f1(x

(k−1)
1 , x

(k−1)
2 ),

x
(k)
j = fj(x

(k−1)
j−1 , x

(k−1)
j , x

(k−1)
j+1 ), 2 ≤ j ≤ n− 1

x
(k)
n = fn(x

(k−1)
n−1 , x

(k−1)
n ).

(2)

It is worth noting that the property of the following linear system:
x′1 = a1x1 + b1x2,

x′j = cj−1xj−1 + ajxj + bj+1xj+1, 2 ≤ j ≤ n− 1,

x′n = cn−1xn−1 + anxn

(3)

plays an important role in investigating the asymptotical behavior of system (1) and its corre-
sponding continuous systems. In the system (3), ai > 0, i = 1, 2 · · · , n, bj > 0, cj > 0, j =
1, 2, · · · , n − 1. For the linear system (3), in [1] Smillie introduced an integer-valued Lyapunov
function (see Section 2), and proved that along a nontrivial solution of the linear system the integer-
valued Lyapunov function has the following properties [2]:

1. The Lyapunov function is defined for all t but an at most finite set of points;

2. The Lyapunov function is locally constant near points where it is defined;

3. The Lyapunov function strictly decreases as t increases through points where it is not defined.

By using the above properties of the integer-valued Lyapunov function for the nontrivial solution of
the linear system, Smille [1], Smith[2], Wang [3] and Fang et al.[4] obtained the global asymptotical
behavior of the corresponding tridiagonal competitive or cooperative systems. All the results show
that the dynamics of the systems is relatively simple.

Due to the fact that the integer-valued Lyapunov function plays a vital role in the investigation
of the global dynamics of system (1) and its corresponding systems, the integer-valued Lyapunov
function may also play an important role in studying the global dynamics of the discrete tridiagonal
cooperative system (2). Therefore, in this paper we attempt to explore the properties of the integer-
valued Lyapunov function for the following linearized system of system (2):

x
(k)
1 = a1x

(k−1)
1 + b1x

(k−1)
2 ,

x
(k)
j = cj−1x

(k−1)
j−1 + ajx

(k−1)
j + bj+1x

(k−1)
j+1 , 2 ≤ j ≤ n− 1,

x
(k)
n = cn−1x

(k−1)
n−1 + anx

(k−1)
n .

(4)

The main purpose of the paper is to study the property of the integer-valued Lyapunov function for
system (4).

The paper is organized as followsµIn section 2, we give the definition of the integer-valued
Lyapunov function, and then present an example. The example shows that the property of the
integer-valued Lyapunov function which holds true for the continuous case does not hold true for
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the discrete case. Thus we subsequently investigate a special class of the discrete tridiagonal coop-
erative linear systems, i.e., totally nonnegative matrix systems. Furthermore, in this section we also
give the definitions of totally nonnegative matrix, oscillatory matrix and so on, and introduce the
corresponding properties of these matrices. Then we state the main result of the paper in Section 2.
The proof of the main result is given in Section 3. In Section 4, we conclude with a brief discussion
on our theoretical and simulation results.

2 Main result

In order to investigate the property of the integer-valued Lyapunov function for the nontrivial
solution of the system (4), it is necessary to give the definition of the integer-valued Lyapunov
function. Let

Λ = {v =


v1

v2
...
vn

 ∈ Rn : v1 6= 0, vn 6= 0 and if

vi = 0 for some i, 2 ≤ i ≤ n− 1, then vi−1vi+1 < 0}

.

Let v = (v1, v2, · · · , vn)T be a vector in Rn, all of whose coordinates vi, i = 1, 2, · · · , n, are
nonzero. Define

σ(v) = #{i : vivi+1 < 0},

where # denotes the cardinality of the set. It is easy to see that Λ is open and dense in Rn. The
map σ, called the integer-valued Lyapunov function, can be continuously extended to Λ, i.e., Λ is
the maximal domain on which σ is continuous. For x0 /∈ Λ, U(x0, δ) denotes the sufficiently small
neighborhood with the center x0. Define

σM (x0) = max
x∈U(x0,δ)∩Λ

σ(x).

It is obvious that σM (x) = σ(x) if x ∈ Λ.

For ease of notation, let

A =



a1 b1 0 · · · 0 0

c1 a2 b2 · · · 0 0

0 c2 a3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1 bn−1

0 0 0 · · · cn−1 an


, (5)

where ai > 0, i = 1, 2, · · · , n, bi > 0, ci > 0, i = 1, 2 · · · , n− 1. It is easy to see that the solution
to the system (4) can be expressed as

x(k) = Ak−1x(1),
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where x(k) = (x
(k)
1 , x

(k)
2 , · · · , x(k)

n )T , k = 1, 2, · · · . According to the corresponding result of the
continuous system, we conjecture that the integer-valued Lyapunov function is also not increasing
along the solution of system (4). We can easily see that the above conjecture is equivalent to the
conjecture that σM (Ax) ≤ σ(x) for all x ∈ Λ. Therefore, the purpose of the paper is to prove the
following conjecture:

• ConjectureµµµσM (Ax) ≤ σ(x) for all x ∈ Λ.

It is worth noting that the above conjecture does not hold true for all nonnegative tridiagonal
matrices. For example, let

A =



2 5 0 0 0

1 3 8 0 0

0 6 6 6 0

0 0 2 3 3

0 0 0 8 8


; x =



8

10

−5

6

−5


.

Direct computation yields that

Ax =



66

−2

66

−7

8


.

It then follows that σ(x) = 3, σM (Ax) = σ(Ax) = 4. Thus σ(x) < σM (Ax) which implies that
the above conjecture does not hold true for all nonnegative tridiagonal matrices.

In the following we only consider the property of the integer-valued Lyapunov function for a
class of nonnegative tridiagonal matrices, i.e., totally nonnegative tridiagonal matrices. Let A be an
n× n matrix. Then we have:

Definition 1. The determinant of a k × k matrix obtained from A by deleting n − k rows and
n− k columns is called a k × k minor of A (or minor determinant of order k of A).

Definition 2:[7] If all minors of any order for A are nonnegative (positive), the matrix A is
called totally nonnegative (totally positive ).

Definition 3:[7] If A is totally nonnegative and if there exists an integer q > 0 such that Aq is
totally positive, A is called oscillatory.

For the nonnegative tridiagonal A defined in (5), we have the following result:

Lemma 1:[7] Let A be the nonnegative tridiagonal matrix defined in (5). Then A is oscillatory
if and only if:

1. all the numbers bi, ci, i = 1, 2, · · · , n− 1 are positive¶
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2. the successive principal minors are positive, i.e.,

a1 > 0,

∣∣∣∣∣∣
a1 b1

c1 a2

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣
a1 b1 0

c1 a2 b2

0 c2 a3

∣∣∣∣∣∣∣∣∣ > 0, · · · ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 0 · · · 0 0

c1 a2 b2 · · · 0 0

0 c2 a3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1 bn−1

0 0 0 · · · cn−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0.

Now we are able to state the main result of the paperµ

Theorem Let A be the nonnegative tridiagonal matrix defined in (5). If A is oscillatory, then
σM (Ax) ≤ σ(x) for all x ∈ Λ.

3 Proof of the main result

In this section, we always assume that the matrix A represents the nonnegative tridiagonal
matrix defined in (5) and A is oscillatory. In order to prove the main result of the paper, let us prove
the following lemma.

Lemma 2. If σ(Ay) ≤ σ(y) for all y which satisfies that y ∈ Λ and Ay ∈ Λ, then we have
σM (Ax) ≤ σ(x) for all x ∈ Λ.

Proof. Since A is a nonsingular matrix and Λ is open in Rn, it follows that for all x0 ∈ Λ there
exists δ1 > 0 such that V = A−1U(Ax0, δ1) ⊂ Λ and V is also open. In addition, since

σM (Ax0) = max
y∈U(Ax0,δ1)∩Λ

σ(y),

it then follows that for all y ∈ U(Ax0, δ1)∩Λ we have σM (Ax0) ≥ σ(y). For all y ∈ U(Ax0, δ1)∩
Λ it is easy to see that there exists x ∈ V such that Ax = y. Thus it follows from the definition
of σM that there exists y′ ∈ U(Ax0, δ1) ∩ Λ and x′ ∈ V such that σM (Ax0) = σ(y′), Ax′ = y′.
This implies that σM (Ax0) = σ(Ax′). By using the given condition that σ(Ax′) ≤ σ(x′), we have
σM (Ax0) ≤ σ(x′) = σ(x0). This completes the proof of Lemma 2.

In order to prove the main result, it then follows from Lemma 2 that we only need to prove
that σ(Ax) ≤ σ(x) for all x which satisfies that x ∈ Λ and Ax ∈ Λ. In the following, we always
assume that x ∈ Λ and Ax ∈ Λ.

3.1 The proof for the case n = 3.

When n = 3, we have

A =


a1 b1 0

c1 a2 b2

0 c2 a3

 ,
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where bi > 0, ci > 0, i = 1, 2 and

a1 > 0,

∣∣∣∣∣∣
a1 b1

c1 a2

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣
a1 b1 0

c1 a2 b2

0 c2 a3

∣∣∣∣∣∣∣∣∣ > 0.

Let x = (x1, x2, x3)T . Then we have

Ax =


a1x1 + b1x2

c1x1 + a2x2 + b2x3

c2x2 + a3x3

 .

In the following, let us consider the following three cases: (1)σ(x) = 0; (2)σ(x) = 2;
(3)σ(x) = 1.

(1)Case σ(x) = 0. If σ(x) = 0, then the three elements in Ax have the same signs, i.e,
σ(Ax) = 0. Thus the main result is proved.

(2)Case σ(x) = 2. Since σ(x) = 2, the number of changes of sign for the vector Ax is at most
2, i.e., σ(Ax) ≤ 2. Thus the main result is proved.

(3)Case σ(x) = 1. Without loss of generality, we only discuss the case that x1 > 0, x2 >
0, x3 < 0, and the other cases can be discussed similarly.

Let x = (x1, x2, x3)T , where x1 > 0, x2 > 0, x3 < 0. Denote y = Ax, y = (y1, y2, y3)T . It is
easy to see that y1 = a1x1 + b1x2 > 0 and c1x1 + a2x2 + b2x3 = y2,

c2x2 + a3x3 = y3.
(6)

In the following we only prove that y2 < 0, y3 > 0 do not hold true. Suppose that y2 < 0, y3 > 0.
Using the Cramer’s Rule to solve Equ. (6) yields that

x2 =

∣∣∣∣ y2 − c1x1 b2
y3 a3

∣∣∣∣∣∣∣∣ a2 b2
c2 a3

∣∣∣∣ ;x3 =

∣∣∣∣ a2 y2 − c1x1

c2 y3

∣∣∣∣∣∣∣∣ a2 b2
c2 a3

∣∣∣∣ .

Since the matrix A is oscillatory, it then follows that∣∣∣∣ a2 b2
c2 a3

∣∣∣∣ > 0.

Because a2 > 0, a3 > 0, b2 > 0, c1 > 0, c2 > 0 and x1 > 0, y2 < 0, y3 > 0, we have x2 < 0, x3 >
0. This contradicts the fact that x2 > 0, x3 < 0. This contradiction implies that the main result is
true for the case n = 3.
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3.2 The proof for the case n = 4.

When n = 4,we have

A =



a1 b1 0 0

c1 a2 b2 0

0 c2 a3 b3

0 0 c3 a4


,

where bi > 0, ci > 0, i = 1, 2, 3 and

a1 > 0,

∣∣∣∣∣∣
a1 b1

c1 a2

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣
a1 b1 0

c1 a2 b2

0 c2 a3

∣∣∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 0 0

c1 a2 b2 0

0 c2 a3 b3

0 0 c3 a4

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Let x = (x1, x2, x3, x4)T . Then we have

Ax =



a1x1 + b1x2

c1x1 + a2x2 + b2x3

c2x2 + a3x3 + b2x4

c3x3 + a4x4


.

In the following, let us consider four cases to prove the main result: (1)σ(x) = 0; (2)σ(x) = 3;
(3)σ(x) = 1 and (4)σ(x) = 2.

(1)Case σ(x) = 0. Direct computation yields that all the elements in the vector Ax have the
same signs, and it follows that σ(Ax) = 0. Thus in this case the main result is proved.

(2)Case σ(x) = 3. In this case, it is easy to see that the elements inAx change the signs at most
3 times, i.e., σ(Ax) ≤ 3. Thus in this case the result is proved.

(3)Case σ(x) = 1. Without loss of generality, we only discuss the case that x1 > 0, x2 >
0, x3 < 0, x4 < 0, and the other cases can be discussed similarly.

Let x = (x1, x2, x3, x4)T , where x1 > 0, x2 > 0, x3 < 0, x4 < 0. Denote y = Ax, y =
(y1, y2, y3, y4)T . Direct computation yields that y1 = a1x1 + b1x2 > 0, y4 = c3x3 + a4x4 < 0 and c1x1 + a2x2 + b2x3 = y2,

c2x2 + a3x3 + b3x4 = y3.
(7)

In the following, we only need to prove that y2 < 0, y3 > 0 do not hold true. Suppose not. Then,
by using the Cramer’s Rule to solve Equ. (7), we have

x2 =

∣∣∣∣ y2 − c1x1 b2
y3 − b3x4 a3

∣∣∣∣∣∣∣∣ a2 b2
c2 a3

∣∣∣∣ ;x3 =

∣∣∣∣ a2 y2 − c1x1

c2 y3 − b3x4

∣∣∣∣∣∣∣∣ a2 b2
c2 a3

∣∣∣∣ .
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Since the matrix A is oscillatory, it then follows that∣∣∣∣ a2 b2
c2 a3

∣∣∣∣ > 0.

Because a2 > 0, a3 > 0, c1 > 0, c2 > 0 and x1 > 0, y2 < 0, x4 < 0, y3 > 0 we have x2 < 0, x3 >
0. This contradicts the fact that x2 > 0, x3 < 0. This contradiction implies that the main result is
true in this case.

(4)Case σ(x) = 2. Without loss of generality, we only discuss the case that x1 > 0, x2 >
0, x3 < 0, x4 > 0, and the other cases can be discussed similarly.

Let x = (x1, x2, x3, x4)T , where x1 > 0, x2 > 0, x3 < 0, x4 > 0. Denote y = Ax, y =
(y1, y2, y3, y4)T . Direct computation yields that y1 = a1x1 + b1x2 > 0 and

c1x1 + a2x2 + b2x3 = y2,

c2x2 + a3x3 + b2x4 = y3,

c3x3 + a4x4 = y4.

(8)

In the following, we only need to prove that y2 < 0, y3 > 0, y4 < 0 do not hold true. Suppose not.
By using the Cramer’s Rule to solve Equ.(8), it follows that

x2 =
(y2 − c1x1)∆11 − y3∆21 + y4∆31

∆
;

x3 =
−(y2 − c1x1)∆12 + y3∆22 − y4∆32

∆
;

x4 =
(y2 − c1x1)∆13 − y3∆23 + y4∆33

∆
.

where

∆ =

∣∣∣∣∣∣
a2 b2 0
c2 a3 b4
0 c3 a4

∣∣∣∣∣∣ ,
and ∆ij is the (i, j) minor of the determinant ∆.

Since A is oscillatory, it then follows that ∆ > 0,∆ij > 0, i, j = 1, 2, 3. Because c1 > 0, x1 >
0, y2 < 0, y3 > 0, y4 < 0, we have x2 < 0, x3 > 0, x4 < 0. This contradicts the fact that
x2 > 0, x3 < 0, x4 > 0. This contradiction implies that the main result is true in this case.

In conclusion, the main result is proved for the case that n = 4.

3.3 The proof for the general case

In the previous two subsections, we provide the proof of the main theorem for the case that
n = 3 and n = 4. In this subsection, we provide the proof of the main theorem for the general case.

Let x = (x1, x2, · · · , xn)T and y = Ax, where y = (y1, y2, · · · , yn)T , 1 ≤ i < m ≤ n. Now
let us state the following lemma which plays an important role in proving the main result.

Lemma 3.If xixi+1 > 0, xm−1xm > 0 and xjxj+1 < 0 for all j, i + 1 ≤ j ≤ m − 2, then
xkyk < 0 does not hold true for all k, i+ 1 ≤ k ≤ m− 1.
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Proof: Consider the equations from (i+ 1)-th to (m− 1)-th in the equation y = Ax:

cixi + ai+1xi+1 + bi+1xi+2 = yi+1

, ci+1xi+1 + ai+2xi+2 + bi+2xi+3 = yi+2

, ci+2xi+2 + ai+3xi+3 + bi+3xi+4 = yi+3

, · · · · · ·

am−3xm−3 + am−2xm−2 + bm−2xm−1 = ym−2

, cm−2xm−2 + am−1xm−1 + bm−1xm = ym−1.

By using the Cramer’s Rule to solve the above equations for xi+1, xi+2, · · · , xm−1, we have

xj =
1

∆

[
m−1∑
k=i+1

yk(−1)k−i+j−i∆k−i,j−i − cixi(−1)1+j−i∆1,j−i−

bm−1xm(−1)m−i−1+j−i∆m−i−1,j

]
, j = i+ 1, i+ 2, · · · ,m− 1,

(9)

where

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai+1 bi+1 0 · · · 0 0

ci+1 ai+2 bi+2 · · · 0 0

0 ci+2 ai+3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · am−2 bm−2

0 0 0 · · · cm−2 am−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and ∆i,j , i, j = 1, 2, · · · ,m− i− 1 is the (i, j) minor of the determinant ∆.

Without loss of generality, we only consider the following case A, and the other cases can be
proved similarly.

Case Aµµµxi < 0, xi+1 < 0, xi+2 > 0, · · · , xm−3 > 0, xm−2 < 0, xm−1 > 0, xm > 0.

In Case A, it is easy to see that m− i+ 1 is an even integer. In the following, we claim:

Assertion Aµµµyi+1 > 0, yi+2 < 0, · · · , ym−3 < 0, ym−2 > 0, ym−1 < 0 do not hold true for
the case A.

Suppose that yi+1 > 0, yi+2 < 0, · · · , ym−3 < 0, ym−2 > 0, ym−1 < 0. Since the matrix
A is oscillatory, it then follows that ∆ > 0,∆i,j > 0, i, j = 1, 2, · · · ,m − i − 1. Because
ci > 0, bm−1 > 0, xi < 0, xm > 0, direct computations yield that

xi+1 =
1

∆

[
m−1∑
k=i+1

yk(−1)k−i+1∆k−i,1 − cixi(−1)2∆1,1 − bm−1xm(−1)m−i+2∆m−i−1,i+1

]
> 0.
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By using the same arguments, it follows that xi+2 < 0, · · · , xm−3 < 0, xm−2 > 0, xm−1 < 0. This
contradicts the conditions in the case A. This contradiction implies that the Assertion A is proved
under the conditions in Case A.

Now we are able to give the proof of the main theorem for the general case.

Proof of Theorem. Let x = (x1, x2, · · · , xn)T ∈ Λ. If the vector x has zero elements, then
according to the definition of Λ we can make sufficiently small perturbation for the zeros such that
all the elements are non-zeros and the integer-valued Lyapunov function is not changed. Thus in the
following we always assume that all elements in x are not zeros. For convenience, let us introduce
the following notations.

1) The block in the vector x is called positive block of x, if the block in the vector x satisfies
one of the following conditions:

(a) xi−1 < 0, xj > 0, j = i, i + 1, · · · ,m, xm+1 < 0 when i > 1,m < n, and denote
xi+1,m−1

+ = (xi+1, xi+2, · · · , xm−1)T¶

(b) xj > 0, j = 1, 2, · · · ,m, xm+1 < 0 when i = 1,m < n, and denote x1,m−1
+ = (x1, x2, · · · , xm−1)T¶

(c) xi−1 < 0,xj > 0, j = i, i+1, · · · , nwhen i > 1,m = n,and denote xi+1,n
+ = (xi+1, xi+2, · · · , xn)T¶

(d) xj > 0, j = 1, 2, · · · , n when i = 1,m = n, and denote x1,n
+ = (xi+1, xi+2, · · · , xn)T¶

2) The block in the vector x is called negative block of x, if the block in the vector x satisfies
one of the following conditions:

(a) xi−1 > 0, xj < 0, j = i, i+1, · · · , k, xm+1 > 0 when i > 1,m < n, and denote xi+1,k−1
− =

(xi+1, xi+2, · · · , xm−1)T¶

(b) xj < 0, j = 1, 2, · · · ,m, xm+1 > 0 when i = 1,m < n, and denote x1,m−1
− = (x1, x2, · · · , xm−1)T¶

(c) xi−1 > 0,xj < 0, j = i, i+1, · · · , nwhen i > 1,m = n, and denote xi+1,n
− = (xi+1, xi+2, · · · , xn)T¶

(d) xj < 0, j = 1, i+1, · · · , n when i = 1,m = n, and denote x1,n
− = (xi+1, xi+2, · · · , xn)T¶

3)The block in the vector x is called sign-changing block of x, if the block in the vector x
satisfies one of the following conditions:

(a) xi−1xi > 0, xjxj+1 < 0, j = i, i+ 1, · · · ,m, xmxm+1 > 0 when i > 1,m < n, and denote
xi,m± = (xi, xi+2, · · · , xm)T¶

(b) xjxj+1 < 0, j = 1, 2, · · · ,m, xmxm+1 > 0 when i = 1,m < n, and denote x1,m
± =

(x1, x2, · · · , xm)T¶

(c) xi−1xi > 0, xjxj+1 < 0, j = i, i + 1, · · · , n − 1 when i > 1,m = n, and denote xi,n± =
(xi, xi+2, · · · , xn)T¶

(d) xjxj+1 < 0, j = 1, 2, · · · , n−1 when i = 1,m = n, and denote x1,n
± = (x1, x2, · · · , xn)T¶
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According to the above notations, the vector x can be expressed as the following block vectors:

x =


x[1]

x[2]

· · ·
x[k]

 ,

where x[l], l = 1, 2, · · · , k is positive, negative and sign-changing block of x. Denote y = Ax. By
using the same manner to divide the vector y into blocks, and the vector y is expressed as

y =


y[1]

y[2]

· · ·
y[k]

 .

We can asset that if x[l] is positive or negative block then y[l] is also positive or negative block,
respectively. In the following, we only consider the case that x[l] is positive block, and the case
that x[l] is negative block can also be discussed in a similar way. Without loss of generality, let
x[l] = xi+1,m−1

+ = (xi+1, xi+2, · · · , xm−1)T . Then we have xj > 0, j = i, i+ 1, · · · ,m. Consider
the equations from the (i+ 1)-th to the (m− 1)-th in the expression y = Ax:

cixi + ai+1xi+1 + bi+1xi+2 = yi+1,

ci+1xi+1 + ai+2xi+2 + bi+2xi+3 = yi+2,

ci+2xi+2 + ai+3xi+3 + bi+3xi+4 = yi+3,

· · · · · ·

am−3xm−3 + am−2xm−2 + bm−2xm−1 = ym−2,

cm−2xm−2 + am−1xm−1 + bm−1xm = ym−1.

Because xj > 0, j = i, i + 1, · · · ,m, ai > 0, j = i + 1, i + 2, · · · ,m − 1; cj > 0, j = i, i +
1, · · · ,m − 2; bj > 0, j = i + 1, i + 2, · · · ,m − 1, it then follows that yj > 0, j = i + 1, i +
2, · · · ,m− 1, i.e., y[l] is positive block.

Next, we only consider the case that the number of the blocks is 3, i.e., k = 3, and x[1] =
x1,k1
± , x[2] = xk1+1,k2−1

+ , x[3] = xk2,n± , where x1 < 0, xn > 0. The other cases can be discussed
in a similar way. Since x[1] = x1,k1

± , x[2] = xk1+1,k2−1
+ , x[3] = xk2,n± and x1 < 0, xm > 0, it

then follows that k1 is an even number, n − k2 − 1 is an odd number and xk1 > 0, xk1+1 >
0, xk2−1 > 0, xk2 > 0. By using the definition of σ we obtain that σ(x) = k1 − 1 + n − k2 and
σ(y[1]) ≤ k1 − 1,σ(y[3]) ≤ n − k2. Thus it then follows from the above assertion that we have
σ(y[2]) = 0.

Because the dimension of the bolck y[1] is k1, Lemma 3 implies that σ(y[1]) = k1 − 1 if and
only if sgn(yj) = sgn(xj), j = 1, 2, · · · , k1. If σ(y[1]) = k1 − 2, then we have y1 > 0, sgn(yj) =
sgn(xj), j = 2, 3, · · · , k1 or yk1 < 0, sgn(yj) = sgn(xj), j = 1, 2, · · · , k1 − 1. If y[1] has the
other forms, we have σ(y[1]) ≤ k1 − 3. Similarly, σ(y[3]) = n − k2 if and only if sgn(yj) =
sgn(xj), j = k2, k2 + 1, · · · , n. If σ(y[3]) = n − k2 − 1, then we have yk2 < 0, sgn(yj) =
sgn(xj), j = k2 + 1, k2 + 2, · · · , n or yn < 0, sgn(yj) = sgn(xj), j = k2, k2 + 1, · · · , n − 1.
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If y[3] has the other forms, we have σ(y[3]) ≤ n − k2 − 2. In the following, let us consider the
following five cases:

Case 1) σ(y[3]) ≤ n − k2 − 2 or σ(y[1]) ≤ k1 − 3. Let us assume that σ(y[3]) ≤ n − k2 − 2.
If σ(y[1]) ≤ k1 − 3, then we can discuss in a similar way. Direct computation yields that σ(y) =
σ(Ax) ≤ σ(y[1])+σ(y[2])+σ(y[3])+2 ≤ k1−1+n−k2−2+2 = σ(x). Thus the main theorem
is proved in this case.

Case 2) σ(y[1]) = k1 − 1 and σ(y[3]) = n− k2. It then follows from the above discussion that
sgn(xj) = sgn(yj), j = 1, 2, · · · , n. Thus we have σ(y) = σ(x), i.e., σ(Ax) = σ(x). The main
theorem is also proved in this case.

Case 3) σ(y[1]) = k1 − 2 and σ(y[3]) = n − k2 − 1. It then follows that σ(y) = σ(Ax) ≤
σ(y[1]) + σ(y[2]) + σ(y[3]) + 2 ≤ k1 − 2 + n− k2 − 1 + 2 = σ(x). The main theorem is proved in
this case.

Case 4) σ(y[1]) = k1 − 2, σ(y[3]) = n − k2. It also follows from the above discussion that
sgn(xj) = sgn(yj), j = k1 +1, k1 +2, · · · , n. Thus we have σ(y) = σ(Ax) ≤ σ(y[1])+σ(y[2])+
σ(y[3]) + 1 ≤ k1 − 2 + n− k2 + 1 = σ(x). The main theorem is then proved in this case.

Case 5) σ(y[1]) = k1 − 1, σ(y[3]) = n − k2 − 1, σ(y[3]) = n − k2 − 1. It follows from the
above discussion that sgn(xj) = sgn(yj), j = 1, 2, · · · , k2 − 1. Thus we have σ(y) = σ(Ax) ≤
σ(y[1]) + σ(y[2]) + σ(y[3]) + 1 ≤ k1 − 1 + n − k2 − 1 + 1 = σ(x). The main theorem is then
proved in this case.

In conclusion, the main theorem is completely proved.

4 Discussion

In this paper, we studied the property of an integer-valued Lyapunov function for a class of
totally nonnegative matrices, and obtained that the integer-valued Lyapunov function for some vec-
tors does not increase when the matrices act on the vectors. The properties may provide some
preliminaries for studying the dynamics of some nonlinear discrete system, such as the system (2).
Furthermore, we wrote MATLAB code to verify the validity of the result, and the code is attached
in the Appendix. The simulation result showed that the main result obtained in this paper is true.

In the further studies on the question, by using the MATLAB code to run a lot of computations,
the simulation result showed that:

Conjecture:If any minors of i-diagonal matrix is positive, then σ(x) > σM (Ax) for all x ∈ Λ.

We guess that the above conjecture is true, and we leave this for further investigation.
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